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Quantum Mechanics of Two-Field Parametric
Frequency Converter Interacting
with a Single Atom
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In this communication we deal with a new model Hamiltonian representing the inter-
action between a two-level atom and two electromagnetic field modes in a cavity. The
interaction between the modes has been taken into account and considered to be of a
parametric frequency converter type. The model can be regarded as a generalization of
two different systems: the Jaynes—Cummings model (atom-field interaction) and the
two-mode frequency converter model (field—field interaction). Under a certain condi-
tion an exact solution for the equations of motion in the Heisenberg picture is given.
The wavefunction in the Schdinger picture is also constructed and used to discuss
some statistical properties related to the model. We assume that the fields are initially
in coherent states. We discuss atomic inversion, photon number distribution, squeezing
and other phenomena. We show in all cases that the system is very sensitive to any
variation in the mean photon numbers.

KEY WORDS: parametric frequency converter; Jaynes—Cummings model; squeezing;
Q-function.

1. INTRODUCTION

It is well known that the interaction of a single two-level atom with the
guantized electromagnetic field of a lossless high-Q cavity is a central problem
in cavity quantum electrodynamics (Filipowietal, 1985, 1986; Guzmaet al.,

1989, Meschedet al, 1985; Rempet al,, 1987). The simplest physical situation
may be described by the well known and today fundamental Jaynes—Cummings
model (JCM) (Jaynes and Cummings, 1963). Despite being simple enough to
be analytically soluble in the rotating wave approximation (RWA), this model
has been a source of insight into the nuances of the interaction between light
and matter. It has allowed a deeper understanding of the dynamical entangling
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and disentangling of the atom-field system over the course of time. It has also
led to nontrivial predictions, such as the collapse-revival phenomenon (Eberly
et al, 1980; Narozhnyet al, 1981), vacuum-field Rabi splitting, sub-Poissonian
statistics, antibunching (Diedrich and Walther, 1987; Short and Mandel, 1983),
squeezing (Kuklinski and Madajczyk, 1988; Short and Mandel, 1983), chaos, and
trapping states (Gea-Bancloche, 1990, 1991; Milogmal, 1983a,b; Phoenix
and Knight, 1988, 1991a,b; Slosssatral, 1989; Slosser and Meystre, 1990). In
fact the complex dynamical evolution and the fully quantum nature of the model
have turned it into a laboratory for theorists and the basis of many more elaborate
models.

The Hamiltonian model describing such a system is given by

H
T =odlat %5 +A(@T6_ +86.), )

wherew is the field frequencya’ anda are the field creation and annihilation
operators satisfying the commutation relatiéng’] = 1, whilex is the coupling
constant, andy is the natural transition frequency of the atam, ando;, are the
usual 2x 2 Pauli matrices satisfying

[07, 0+] = 204, [04,0-] =02 )

There are a huge number of papers considering this model in great detail.
Most of these papers concentrate on the statistical behavior as well as the dynam-
ics of the model; for more details see Shore and Knight (1993) and the references
therein. However, to meet the experimental realization, there are several attempts
to generalize and modify this model into different directions. For instance it has
been generalized and extended to include the effects of cavity mode decay as well
as black-body photons (Knight and Radmore, 1982; Puri and Joshi, 1989). Fur-
thermore we can see the consideration of multimode and multiphoton instead of
single mode and single photon processes (Abald.,, 1990, 1991, 2002), addi-
tion of Kerr-like medium (Buzek and Jex, 1990; Joshi and Puri, 1992; Werner and
Risken, 1991a,b), and Stark shift, among other modifications (AbdekAg).,

2002; Gouet al,, 1997; Moyeet al, 1991). We may also refer to Tavis—Cummings
model (TCM) as a generalization of JCM (Deng, 19983; Joshi and Lawande, 1991,
Taviset al, 1966) where the angular momentum operators replace the Pauli ma-
trices to study multilevel atom instead of two-level atom (Bogoluebal,, 1984;
Makhviladze and Shelepin, 1974). In the meantime it has been observed that if the
interaction occurs between more than one field, mode none of the above workers
considered modifications to include the interaction between the field modes them-
selves. In the present communication, we shall fill this gap and introduce a new
Hamiltonian model taking the interaction between the fields to be of a parametric
frequency type (Glauber, 1963). In fact parametric frequency conversion occurs
in a number of well-known phenomena including the production of anti-Stokes
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radiation in Brillouin and Raman scattering, and the upconversion of light signals
in nonlinear media. Furthermore parametric up conversion is of interest for the
conversion of infrared wavelengths into the visible part of the spectrum where fast
and efficient detection is possible using photomultipliers (Abdzstli., 2001a,b;
El-Oranyet al, 2001a,b,c).

The model we shall introduce consists of two modes of the cavity field in-
teracting with a single atom within a perfect cavity. The interaction between the
fields will be taken into account where we assume it to be of parametric frequency
converter type. In this case the model we shall consider takes the form

H &, .. i A wo . Ata A n
T = D wdfa +h@6- +as)] + 56+ r(ala +ad). ()
i=1
wherew;, i = 1, 2 are the fields frequencies, ainglhas the same meaning as in
Eqg. (1), whilea;, i = 1, 2 are the coupling constants between the modes and the

atom. The last term of the above Hamiltonian represents the interaction between
the modes wherg; is the coupling parameter. The operatérsand al are the

usual Boson operators for the quantized fields mode which diaeg;] = &j,
wheres;; = 1ifi = j, and zero otherwise.

The Hamiltonian (3) can be regarded in one side as a generalization of the
Jaynes—Cummings model and in the other side as a two field parametric frequency
model. This is quite obvious from the comparison between Egs. (1) and (3) where
the effect of the second mode as well as the interaction between the fields are
apparent from the existence of the coupling parametgmnd 3, respectively.

The main purpose of the present paper is to consider the atomic inversion as well as
to discuss some statistical properties related to the Hamiltonian of Eq. (3). To reach
our goal we have to find the exact time-dependent expressions for the dynamical
operatorsy; ando’s. This can be achieved by solving the equations of motion in
the Heisenberg picture.

For this purpose we devote section 2 to giving the exact solution for the
equations of motion. In section 3 we shall consider the probability amplitude as
well the atomic inversion, while in section 4 we discuss the correlation function
followed by a discussion related to the squeezing phenomenon in section 5. We
have also devote section 6 to consider the second-order correlation function for
each mode. While in section 7 we discuss the behavior of the Q-function, followed
by a consideration of the phase distribution and quantum field entropy in 7 and 10,
respectively.

2. DYNAMICAL OPERATORS AND THE WAVEFUNCTION

Our aim in this section is to concentrate on finding the dynamical operators
expression for both atomic and fields for the present system. Also we shallintroduce
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the exact formula for the wavefunction in Soldifiger represtation. Both of these
expressions will be used later in our discussion for the statistical properties of the
model. For this reason let us first find the solution of the Heisenberg equations of
motion. To do so we introduce the canonical transformation

= by cost + b, sing, &, = b, cost — by sing, (4)

whereg = 1 tan—l( 213 ) and the operatoris and bT satisfy the commutation
relation b il= 8., —1ifi = j andzerootherwise. Inthls case the Hamiltonian
(3) takes the form

H & ae
5= =Y bb + —az +81(blo_ + Byoy) + 8a(Bfo + booy)  (5)
i=1
wheres;, i = 1, 2 are the modified coupling parameters given by
81 = (A1 €OSE — Az sSiNg), and 82 = (A2 COSE + A1 SiNg), (6)
and;,i = 1, 2 are the new free frequencies of fields such that

Q1 = (w1COFE + wp SIPE — A3 sin%), and
Qo = (w2 COFE + w1 SIPE + A3 Sin 2%). 7)

Before we go further let us assume the stées m,), (say) corresponding
to the physical operatoig andé\1 i =1, 2 such thaB;|my, myp) = ,/Myg|my —
1, mp) anddz|my, mp) = /My|my, mg — 1) and the statefny, ny), correspond-
ing to the rotated operatoris, andb j =1, 2 with properties similar to that
of the operatorsy and 4. Then the connection between the two states are

given by
UL mq moy niiny! 2
= $55500 (7)) ()

i=0 i=
x (cosg)™ ¥ (sing)™ " ng, ng)y, (8)

where ng=i+j,andn, =my+my, —i — j. In this case one can show that
a1 a,|m1, My)a = Mi|Mg, M), i = 1,2 and similarly for the other operators
bTb IN1, N2)p = NjINg, N2)p, j = 1, 2. Furthermore if we assume thati = 1, 2

|s the eigenvalues of the oparatdgswith respect the coherent statg) and
Bj, j =1, 2 are the eigenvalues of the oparatbjrsrvith respect to the coherent
stateq ;). Then the relation between the two eigenvalues is

o1 = f1 COSE + B2 Sing, o — Bo COSE — By SINg,
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It is well known that for any operatdﬁ the Heisenberg equation of motion
is given by

dd 40 1 . -
— = —+ —[O, H], 9
at = ot "into Ml ©
therefore the equations of the motion for the Hamiltonian (5) are

db P b P

d—tl = —I lel —1810_, d—tz = —I szg —1820_,

do_ S oA £y A

W = —lwoo_ + |(81b1 + (Szbz)(fz,

A6, oot e il e

Fi 2181(bj6_ — b16y) + 2i82(byo_ — broy). (10)

However because of the difficulty of solving the system of equations resulting

from the Heisenberg equations of motion we shall adjust the coupling parameter
A3 to take the form

AA wy —
= 1725, where ¢ = 22 !
(A1 +A) A2 — A1

In this case the restrictive condition (11) implies that the coupling pararégter
tends to zero whilé; survives and equals tp= /17 + A3. After straightforward
calculations the general solution of Egs. (10) are given by

ba(t) = b1(0) exp(iQt),

3

(11)

Bo(t)t = &t Hcos@xt) - i% sin(yt):| b,(0) — ig sin(yt)&_(O):| ,

&_(t)t = &t Hcos@/t) + i% sin(yt)} 6_(0) — ig sin(yt)BZ(O)} ,

G(t) = (cos(zit) i % sin(ZCt)) 5,(0) + Si”(éCt)[é
— 20Dy(0)6, (0)] + széCt), (12)
where
- AL I
C= 50z + n(b264 + bj5_), (13)

and A = (wg — R22) represents the detuning parameter. The quaptiyndC in
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Eqg. (12) are

1
2

AZ e 2 AZ AL A
y= |G @ 4o+ D) ande = | Sk B+ 5,600

(14)

Having obtained the dynamical operators expressions for the Hamiltonian
model (5), we are therefore in position to discuss the statistical properties of the
present system. However, it will be also convenient to construct the wavefunction
in Schiodinger picture. Thus if we consider that, at time 0, the atom is prepared
in its coherent excited state, ¢) = [cos% le) + sin %e*“ﬂg)], and both fields are
considered to be initially in a coherent states, then the initial wavefunction of the
system can be written as

[e¢]

0
OESY |:qn1n2 [cos le) + sin e"”lg)}@lnl, nz>b]. (15)
0

Ng,N2=

After some algebric manipulations the wavefunctiort at 0 will take the
form

00

ZOEE [cosg{Fl(nz,t)}qm,m

ng,n;=0

.6
—ie '’ sin Eel(nz, t){Vl(nZ)qnl,n2+l}i| INg, N2)p ® |€)

+ Z |: e % sin- FZ(nZa t)0n,,n,

ny,no=0

. 6
—i Coszez(nz, t)va(ny, t)in,n2—1:| N1, N2)p ® Q).

= Z [A(ng, N2, t)INg, N2)p ® |€) + B(ng, N2, t)[N1, N2)p ® [9)], (16)
ng,n,=0
where
Fi(ny, t) = (cos i (n2)t 1A singzi(n )t)
j\nz, t) = i \n2)t — m iz )

singj(no)t (A .
W’ 2(”2) = |:_ + VJ(nz)i| , j=1,2 (17)

gj(n2, t) = 2

with

vi(n2) = n?(Nz + 1), Ba(n2) = n°ny, (18)
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and the functiorF;, i = 1, 2 in Eq. (16) is the complex conjugate of the function
Fi.

Now let us introduce a combination between the opereﬁpamd b, which
will be more convenient for us to use. This may be written as

H({, m,r, p,t) = (y ()b BIBY BY v (1)
| B2

= exp(— |82 B B; B By Z no!

n,=0

[Fi(nz + p, t)

X F_]_(nz +r, t)
+ 182172/ (N2 + p)(N2 +1)ex(nz + p, t) x ex(nz +1, 1)

Vva(nz + p)va(nz +1)], (19)

The above formula will be usefull for us, and we shall use it later. Further let us
introduce the reduced density operatdit) as follows

p"(t) = [AR)) (A + [BM) (B(L)I, (20)

where| A(t)) and|B(t)) are defined through Eq. (16). In the forthcoming sections
we shall employ the results obtained here to discuss some statistical properties for
the present model.

3. ATOMIC INVERSION

Atomic population inversion can be considered as the simplest important
quantity in the JCM. It is defined as the difference between the probabilities of
finding the atom in the exited state and in the ground state. When the atom is in
the excited state, the atomic inversion is given by

oo M

W(t) = %efwz > 2—5{“:1(”2, t)[? — [ew(nz, thra(n2)]?}, (21)
n,=0

whence we find the phenomenon of collapses and revivals similar to that of the
coherent state JCM case. Since the revival times can be estimated (Etbaitly
1980; Gerry and Hach, 1993; Moya-Cessa and Vidiella-Barranco, 1995; Narozhny
et al, 1981, Vidiella-Barrancet al, 1992), the revival times for a coherent state
can be written atk = 2w 4/n,. In our numerical investigations we plot the atomic
inversion against timetaking into consideration the atom initially in the excited
state and the field is prepared for different cases. In all cases we consider here it
should be noted that we assum the parametetsp = 0. In Fig. 1(a) we have
taken the two fields parametef = —a, = 3, and the coupling parameters ratio
r1/A2 = L.1whichrepresents very weak field (almost vacuum). In this case we see
in absence of the detuning parameter (resonance/cas®) that there are regular
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Fig. 1. The evolution of the atomic inversion against tintke atom initially in excited stat® (= 0 and

¢ = 0) and the field is prepared in some different casesx{a} —a» = 3, 11/A2 = 1.1 andA = 0;
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Fig. 1. (Continued)

oscillations aroundV(t) = 0 where no collapses and revivals can be observed.
Similar observation can be seen for the off-resonance case wvked, where we

can see regular oscillations arout{t) = 0.4 but without any observation of the
collapses and revivals phenomenon, however there is a rapid fluctuations occurred
in the function, see Fig. 1(b). On contrary when the two fields parameter take the
valuesy; = a, = 3, andthe coupling parametersraitig, = 0.1, corresponding

to slightly weak field , ~ 9), the situation is drastically changed. In this case
and in absence of the detuning parameter (exact resonance case), we can realize
for tr = 27 /Ny, that after short period of collapse the function shows long revival
period followed by another collapses period, however as the time goes on we can see
very weak revivals appeared at different period of the time during the course of the
interaction, see Figs. 1(c). When the detuning parameter takes/placé we can

see an increase in the revivals period and both collapses and revivals are apparent,
however the function value is shifted upwards, see Fig. 1(d). Same conclusion may
be given for the case in which the coupling parameters kafia, = 1.1(n, ~ 18)

with the same value of the field parametefs= —a, = 3. In this case the exact
resonance shows fluctuations around zero, while for the nonresonance case the
mean value of the atomic inversion is shifted upwards which means that the energy
is inherent in the atomic system, see Fig. 1(e) and (f).
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4. PHOTON NUMBER DISTRIBUTION

In this section we shall discuss the behavior of the photon numbers related to
the present system. When the atom starts from its excited state we can write the
mean number of photons for each mode which is related to the physical modes
according to the following formulae

(Ay(t)) = H(1, 1,0, 0) co$& + RegH(1,0,0,1)) sin2 + H(0, 0, 1, 1) siRE,
(22)

and

(Mx(t)) = H(1, 1,0, 0) siRé — RgH(1, 0,0, 1)) sin2 4+ H(0, 0, 1, 1) co&&.
(23)

In the present case the Rabi frequency is proportiongd(t, + 1), which is
similarly to that of the single mode JCM case. This is in fact due to the canonical
transformation and the restricted condition which have been used to transform the
present systemto a single mode case. We have plotted in Fig. 2 the expectation value
of the photon number&; (t)) and(n,(t)) against the timé for different values of
the parameters, ay, A1, A2, and the detuning parametar. For example when
we take the parametes§ = —a = 3, and the ratio of the coupling parameters
A1/h2 = L.1withfixed value of the parameteis= 0, andp = 0, we canobservein
the resonance cage= 0 that, there are slow and irregular oscillations with slight
intersection between the two functions. This is quite obvious from an oscillating
envelope appearing in Fig. 2(a). However when the detuning parameter is taken
into consideratiom\ = 4 (off-resonance case), we find there are rapid oscillations,
however with small amplitude imposed on slowly oscillating envelope as shown in
Fig. 2(b). In addition we can also see in this case more regularity in the functions
behavior which is on the contrary to the exact resonance case. For the case in
which the parameterg; = o, = 3, we have plotted Figs. 2(c)—(f) for the same
values of the other parameters. We have observed that in both cases resonance
and off-resonance there are rapid oscillations with small amplitude imposed on an
oscillating envolope. Also we can mention that there no intersection occurs between
the two function during the whole period of the time considered. This difference
is due to the appearance of the middle terms in both Egs. (22) and (23) which is
the source of the oscillating envelope as can be seen clearly from the figures. This
means that the first mode gains energy at the expense of the second mode.

5. SQUEEZING PHENOMENON

Investigation of the squeezing properties of the radiation field is a central topic
in quantum optics. For this reason we devote this section to discuss the squeezing
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phenomenon related to the present system. In fact, squeezed light is a radiation
field without a classical analogue, one of whose quadratures of the electric field
has less fluctuations than those for a coherent state at the expense of increased
fluctuations in the other quadrature, such that the Heisenberg uncertainty relation
is fulfilled. The usefulness of such light relates to several applications in optical
communication networks (Shapiedal., 1979; Yuen and Shapiro, 1978, 1980), to
interferometric techniques (Caves and Schumaker, 1985; Schumaker and Caves,
1985), and to optical waveguide tap (Shapiro, 1980). Generation of squeezed light
has been observed in many optical processes (Loundon and Knight, 1987; Meystre
and Walls, 1991). We shall here concentrate on discussing the two mode normal
squeezing, and therefore to reach our goal we must calculate the variances of the
two slowly varying quadratures of

XZF(al+a1+ +a2) andy_ﬁ(al—aﬁraz—éz) (24)
These operators satisfy the commutation relatiary] = § and the uncertainty
relation

1
AR (AY)? > —
(ARA(AF) = 7.

The state of the field is said to be squeezed whenever one of the two quadra-

turesX andy satisfies the relation

(25)

(%)) or (A7) < 5. (26)

The variancd(AX)?) = (X?) — (%?) is given in terms of annihilation and creation
operators expectation values by

; j{((bhb b{%6) sir? (2 &)

+ {(B}” + B + B}’B3)) cos (% — &)

(A%)%) =

+ ((6162 + 616; + 626:]; + 616;» CcOos %'
o PO 2
— [ By + By sin(F — &) + (B2 + B cos(F — ¢ } (27)

In our numerical computation for discussing the temporal behavignst)?),
we have considered two different cases providedihat0, andp = 0. One when
we take the value; = —«, = 3 and plotted Fig. 3(a) and (b), and the second when
we taker; = ap = 3, and plotted Fig. 3(c)—(f). For the first case we have taken the
coupling parameters ratig /A, = 1.1, and the system at exact resonance: 0.
In this case we can see a small amount of squeezing, however when the detuning
parameter takes place = 4 (off-resonance case) we observe an increase in the
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number of the fluctuations with an decrease in its maximum value. The squeezing
amount in this case is too small and occurred for a short period of the time, see
Fig. 3(a) and (b). For the other case where the field parametetsa, = 3 and

the ratio of the coupling parametexg/A, = 0.1, we can observe the squeezing
occurred just twice for both resonange= 0, and off-resonance& = 4, cases

within short period of the time, however the amount of the squeezing in the off-
resonance case is much larger then the exact resonance case, see Fig. 3(c) and
(d). This phenomenon gets more pronounced in the strong field case, for example
when we increase the ratio of the coupling parametefs, = 1.1, where we can

see the maximum value of the squeezing is also increased, see Fig. 3(e) and (f).

6. SECOND-ORDER CORRELATION FUNCTION

As another example of nonclassical of light we introduce in this context is the
sub-Poissonian light which can be measured by photodetectors. A state (of a single
mode for convenience) which displays sub-Poisson statistics is characterized by
the fact that the variance of the photon numigexf; (t))?) is less then the average
photon number(éﬁ(t)é; (t)) = (A (t)). This can be expressed by means of the
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normalized normal second-order correlation function as (Loundon, 1983).

@ BIOFO) ) (AROP - @Oa) (28)
' (& (t)a2(t))° (&' (t)a (1))2
where the subscriptrelates to théth mode. Then it holds thzgfz)(t) < 1for sub-
Poissonian distributiongi(z)(t) > 1 for super-Poissonian distribution and when
gi(z)(t) = 1 Poisson distribution of photons occurs. To discuss the behavior of the
correlation function related to the present system we have to calculate the quantities

(éfzé,?), i =1, 2 by means of the rotating transformation (4). In the first mode case
we have the expression

(a}%a2) = (bi*b?) cod' & + (b°H3) cod' &

+ SRA(BLE3)) si? 2¢ + Re{(b{7Bbo)) cos ¢ sir? 2%

— 2Re((b1b}%D,)) cof & sin 2 + (b]b1blby) sir? 2¢ (29)
and
(Pa(t)) = (& (1) (t))
H(1, 1,0, 0) cod¢ + RgH(1,0,0,1)) sin2
+H(0,0,1,1) sifg (30)

Similarly for the second mode we have the following:
(aj?a3) = (bj*b2) sin* & + (bS°b2) codt &
+ S Re((B{783)) sirP 2z — Rel(B{%Buf) sivP & sir? 22
— 2Re((01b}%D,)) cof £ sin + (blbiblby) siP2s  (31)
and
(83 (1)2a(t))
H(1, 1,0, 0) cod¢ — RgH(1, 0,0, 1)) sin2
+H(0,0,1,1) siRE. (32)

(Aa(t))

Now let us discuss the numerical results for the functifiit) when the
field state initially in coherent state and the atom in the excited state. As before we
shall consider the case in which field parametgrs- —a, = 3, and the coupling
parameters ratid; /A, = 1.1. In absence of the detuning parametet 0, (exact
resonance case) we can see regular fluctuations behavior and the function is almost
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super-Poissonian (thermal distribution), where the field shows Poisson distribution
at some interval. When the detuning parameter takes plaeed, (off-resanonce
case) we can see more fluctuations in the function behavior with observation of
super and sub-Poissonian distribution. However the value of the themal distribution
is much greater than the sub-Poissonian distribution, see Fig. 4(a) and (b). As
soon as we take; = ap = 3, while the value of the coupling parameters ratio
M/A2 = 0.1, a drastically changing occur in the function behavior. In this case
when A = 0 the function shows oscillation between super-Poissonian and sub-
Poissonian distribution. The minimum value of the function occurs at the half
time of the interaction period, showing sub-Poissonian behavior. This behavior is
not quite in presence of the detuning parameter 4, where we observe more
decreasing in the minimum value followed by more increasing in the maximum
value. However, this behavior takes time longer than that the exact resonance case,
see Fig. 4(c) and (d). More increase in the coupling parametersiigtip = 1.1,

leads to more decrease in the sub-Poissonian interval, see Fig. 4(e) and (f). Finally
we may point out that as a result of the similarity between Eqs (28) and (31) then
the behavior of the functlog2 (t) will be similar to that ofgl (t)

7. Q-FUNCTION

In the following we shall concentrate on one of the most important quasi-
probability distribution functions, thaat is tH@-function (Mollow and Glauber,
1967a,b). TheQ-function is not only a convenient tool to calculate expectation
values of antinormally ordered products of opeators, but also it gives us a new
insight into the mechanism of the interaction for the model under consideration.
It is well known that theQ-function can be defined in terms of diagonal elements
of the density operator in the coherent state. Therefore we shall use the reduced
density operator of the field’ (t) given by Eq. (20) to study the evolution of the
guasi-probability distributior@Q-function defined by

1y () )"
Q.0 = Zarlo" i) 2 Am® "= (33)

where|I") is a coherent state. Provided we defihe- x + iy, then in Fig. (5) we

have sketched th@-function for the field initially in a coherent state and the atom

in its excited state. As usual we fix&d= 0, and¢ = 0, where we considered

the case in which the field parameteis= —a, = 3, and the coupling parameters
ratiori/1, = 1.1.i.e., thefield is almost vacuum. Initially at tirhe- O we observe

the function has only one peak centered at the origin (0,0), see Fig. 5(a), and as time
develops it does not change its position. However, for the other cases of moderate
or strong fields as the time develops the function splits into two peaks moving into
opposite directions until they meet again at the revival time, see Fig. 5(f). That s,
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Fig. 4. Time evolution of the Correlation functicgiz)(t) againsttime the atom initially in excited state
(6 = 0 and¢ = 0) and the field is prepared in some different casesy{ay —a2 = 3,21/22 = 1.1
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Fig. 4. (Continued)

as time develops the two-peak move in the opposite directions around a circular
path whose radius equals the square root of the initial mean photon nmgmber
and the peaks meet at the opposite side of the circle from the start at the revival
time. The two peaks are symmertic at exact resonance, this is observed at half
the revival time when we tak& = 0, anda; = o = 3, while A1 /A, = 1.1 or

0.1, see Fig. 5(b) and (d). In the other case when we take the detuning parameter
into account the function shows asymmetric stretching between the two peaks.
Asymmetry behavior is observed for this case of detuning in Figs. 5(c) and (e).
It is to be observed that increasing the mean photon number in the field results
in spreading the&)-function in the phase space and hence an increase in the peak
contour resultant of increasing the coupling parameter ratio.

8. PHASE DISTRIBUTION

Barnett and Pegg defined a Hermitian phase operator in a finite dimensional
state space (Barnett and Pegg, 1989; Olmdd, 1998, 1999; Pegg and Barnett,
1988, 1989, 1997). They used the fact that, in this state space one can define phase
states rigorously. Thus the phase operator is defined as the projection operator
on the particular phase state multiplied by the corresponding value of the phase.
In fact the phase operator can be employed to investigate the phase properties of
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guantum state for a single mode of the electromagnetic field. Furthermore, it can
be easily extended to include the two-mode field which is also of interest in the
field of quantum optics. In the following we shall study the phase properties of the
present system in a light of the Pegg—Barnett phase formalism. If we consider the
field initially prepared in a coherent state then the Pegg—Barnett phase distribution
P(¢z, t) can be written as an infinite sum, thus

P = 5 D pll®) XPE( — M — 20, (34)

I,m=0

whereg is the phase reference angle arllfqin(t) is the density matrix operator.
Alternatively we may take, to be zero and rewrite the phase distribution in the
form

oo

PUO =5 1142Re D ol expi(—elf,  (39)

l,j=0;j=I

We have computed the phase probability distribution function, related to
a more generalized system of a two-level atom in interaction with a two-mode
but after some specific transformation converted to one-mode as shown above.
In our computations, the field is initially in coherent states and the atom in
excited state. In Fig. 6 the phase distributiBiiz, t) is plotted against and
timet.

For the case of the almost vacuum (see the parameters taken above in the
previous sections) we see that the distribution is almost flat with a hump around
¢ = 0 and this figure changes slightly as time develops see Fig. 6(a). The case
changes slightly as the case of off-resonance is taken into consideration as can be
seen from Fig. 6(b). This can be related to the phase space plot of the Q-function
shown in Fig. 5(a) where it is centered unmoved at the origin. While for the case
of moderate and strong fields andtat O only one peak in the middle appears
at; = 0, the peak is symmetric abogit= 0. As timet increases the peak in the
middle splits into two peaks diverging away from the middle towards the wings
¢ = =7 where they meet them at= tg but as the time increses the two wings
converge towards the middie= 0 att = 2tg. In the case of resonance the figure
is symmetric around = 0 as can be seen from Figs. 5(c) and (e) where the two-
peak figure shows this symmetry. On the other hand this symmetry is broken in the
case of off-resonance where one of the peaks is subdued while the second peak is
raised. The reason is due to the amplitudes of the two rotating peaks where one of
them has higher value than the other as depicted in the figures f@-tbaction
(Obadeet al. 1998 and 1999).
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Fig. 6. The evolution of the phase distribution againgtt] the atom initially in excited stat® (= 0 and

¢ = 0) and the field is prepared in some different casesv{ay —a2 = 3, A1/A2 = 1.1 andA = 0;
(b) A = 4 and other parameters same as (a)x{Cxr a2 = 3,11/12 = 0.1 andA = 0; (d) A =4 and
other parameters same as (c){e)= a2 = 3,11/A2 = 1.1andA = 0; (f) A = 4 and other parameters
same as (e).
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Fig. 6. (Continued)

9. QUANTUM FIELD ENTROPY

Since the field entropy can be used as a measurement of the degradation of
entanglement between the field and the atom, we devote the present section to
discuss the degree of entanglement for the present system. The quantum dynamics
described by the Hamiltonian (3) leads to an entanglement between the field and
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the atom, which will be quantified by the field entropy. From quantum mechanics
point of view the von Neumann entropy of the state p (the density operator for a
given quantum system) is defined as

S="Tr{pIn p}, (36)

where we have set Boltzmann’s constant 1. If o describes a pure state, the
S=0, and if p describes a mixed state, th&n£ 0. Araki and Lieb showed that

these entropies satisfy the triangle inequaliti@s— S¢| < S< § + S¢. Quan-

tum entropies are generally difficult to compute because they involve the diagonal-
ization of large (and, in many cases, infinite dimensional) density matrices. Thus
explicitillustrations of the inequalitids, — S¢| < S< S, + Sf are difficult. The
authors of references (Phoenix and Knight, 1988, 1991a,b) succeeded to evaluate
the field entropy in a closed form and showed that it did indeed equal the atomic
entropy at all times in the context of the Jaynes—Cummings model. They consid-
ered a two-level atom interacting with an undamped cavity initially in a coherent
state. In this case the composite entropy is initially zero and remains zero at all
times since the atom-field system is isolated from its environment. If the system

is closed, then we havg = S,, for the entropy of a general two-component sys-
tem. One immediate consequence of this inequality is that if the total system is
prepared in a pure state then the component systems have equal entropies. Since
our Hamiltonian model can be regarded as a generalization of JCM, we shall fol-
low the method adopted earlier to calculate the atomic entropy. The entropies of
the atom and the field, when treated as a separate system, are defined through the
corresponding reduced density operators by

Sty = Tracny{pacr) Inpacy} (37)

provided we treat both separately. Since the trace is invariant under a similarity
transformation, then we can go to a basis in which the density matrix of the field is
diagonal and then express the field entr&@pft) in terms of the eigenvalu?e}i(t),

for the reduced field density operator. To calculate the various field eigenstates in
a simple way, a general method has been developed by Phoenix and Knight (1988,
1991a,b). By applying this method, we can obtain the eigenvalues for the reduced
density operator thus,

ME() = (AWM)IA()) £ expFc]I{At)IB(1)) |
= (B(t)IB(t)) + exp[F<]I(B(t) At))l, (38)

where

s —sii (00— BORO)). 39

2[(AM)IB(1))|
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Thus the field entropys: (t) may be expressed in terms of the eigenvalues
)ﬁf(t) for the reduced field density operator as,

Si(t) = —[27 (1) INAT(E) + A7 (1) InA7 (O] (40)

In the following we shall use Eq. (40) to discuss the degree of entangle-
ment for the present model. For this reason we have considered in our numerical
computations the parametersand¢ are zero. Thus for different values of both
the mean photon numbess, i = 1, 2 and the coupling parameters ratig/ Ao,
we plotted Fig. (7). For example when we sgt= —a, = 3, andi; /A, = 1.1
and in absence of the detuning parameter (resonances case), we observe a rapid
fluctuations during the course of interaction. This can be seen in Fig. 7(a) where
the entropy function varies between its maximum and its minimum value. This
means that there is a fast collapses and revivals during the interaction period which
leads to a strong and weak entanglement between the atom and the field. Moreover
we can also see disentanglement at certain period of the time. On the other hand
when the detuning parameter takes place 4, (off-resonances case) we observe
some changes occur in the function behavior. For example, we realize the entropy
function reduced its maximum value. In the meantime the numbers of disentangle-
ment period are also decreased. This decrement in the entropy function is nearly
equivalent to half of the exact resonance case, see Fig. 7(b). Now let us turn our
attention to consider the case in which the field parametges o, = 3, and the
ratio between the coupling parametesgi, = 0.1. In this case the behavior of
the entropy function is drastically changed. For instance, there is no disentangle-
ment can be observe at any period of the time during the course of interaction.
Further the greatest decrement in the field entropy occurs after a short period of
time, followed by an increase in the value of the entropy. As the time developes
we realize there is an increase in the entropy value in addition to irregular fluctu-
ations behavior; see Fig. 7(c). Weak entanglement can be observed in presence of
the detuning parameter where the maximum value of the entropy in this case is
decreased, in the meantime the function shows an increase in it minimum value,
see Fig. 7(d). Comparing with the previous case, any change in the value of the
coupling parameters ratig /A, = 1.1 leads to increase in the entropy maximum
value after onset of the interaction providad= 0. However we can also see a
decrease in the minimum value just for short period of the time. This is followed by
irregular fluctuations with more increasing in function value, see Fig. 7(e). When
we takeA = 4 similarly behavior to that of the previous cases can be seen but with
more revival in the function, provided the coupling parameters ratio unchanged,
see Fig. 7(f). Finally, we may conclude that in absence of the detuning parameter
(exact resonance case) the entropy function reaches both absolute maximum and
absolute minimum of its value. However, existence of the detuning parameter (off-
resonance case) decreases the maximum value and increases the minimum value



P [ <
P e — <
— — 8
e | P ——l) - &
e ————
P = i <
e P———— I«
T ———— A T
== — == I8¢5
s T ——— B —— w. < b
o ™ O
P ———————, g N
T —— e <
xll’“'!l.b e -
e 1 e ——— =
== = o
e
— ———— F)
E\P“ T s — ~
— e T
= — B

< (4]
eﬁMmm
- S ®

\ . : .
_____

- o ~ @ o o < o < ® < P o v
2 2 2 9 ] 3 g 2 B = 3 2 2 “ =




Quantum Mechanics of Two-Field Parametric Frequency Converter

oesmad, X8 T
0.64 +
i A e
E‘ 048 {\1\‘
% s(t)
= 032 1
0.16 1
0 ¢ t 1 t - + t {
0 30 40 50 60 70 20 50 100
[ 1 100,
Time scale
d
o.680308, O¥ T
0.64 1 i /I NV\JVV\ “
IV
- 0.48 1 ‘\
=
% s(t)
= 032 H '
0.16
0 ; 1 + i t t t f
0 30 40 50 60 70 80 % 100
o t 100,
Time scale
e
0660419, O8T
0.64 + \
V\/\/\ ’\ NW\/\/\ [
0.48 | /
P
t
b s(t)
032
0.16 ]
0 t t t t t t + |
0 30 40 50 60 70 80 90 100
0 t 100,
Time scale
f

Fig. 7. (Continued)

2761




2762 Abdalla, Obada, and Khalil

of the field entropy, and consequently we can obtain a variation in the degree of
the entanglement. This phenomenon is in fact dominant in all the cases we have
considered.

10. CONCLUSION

In the previous sections of the present paper we have considered the sta-
tistical properties of a new Hamiltonian model. This Hamiltonian represents the
interaction between a single two-level atom and two fields injected simultane-
ously within a perfect cavity. The model can be regarded as a generalization of the
Jaynes—Cummings model, or it can be regarded as a generalization of the para-
metric frequency converter model. Under a certain integrability condition we have
obtained both the dynamical operators in the Heisenberg picture and the wave-
function in the Schodinger picture, see Eq. (16). In obtaining the wavefunction
representation we have taken the system to be initially in a correlated coherent
state. This in fact gave us an advantage to see the interference between the two
fields. Several statistical properties of the system have been discussed, for exam-
ple atomic inversion, photon number distribution, and the squeezing phenomenon.
Most of our discussion concentrated on the effect of the variation of the coupling
parameters ratio, and the detuning parameter as well as the fields mean photon
numbers. We have shown that in all cases the system is sensitive to any variation in
these parameters. For example the degree of the entanglement is affected strongly
when the fields mean photon numbers are changed.
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