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In this communication we deal with a new model Hamiltonian representing the inter-
action between a two-level atom and two electromagnetic field modes in a cavity. The
interaction between the modes has been taken into account and considered to be of a
parametric frequency converter type. The model can be regarded as a generalization of
two different systems: the Jaynes–Cummings model (atom–field interaction) and the
two-mode frequency converter model (field–field interaction). Under a certain condi-
tion an exact solution for the equations of motion in the Heisenberg picture is given.
The wavefunction in the Schr¨odinger picture is also constructed and used to discuss
some statistical properties related to the model. We assume that the fields are initially
in coherent states. We discuss atomic inversion, photon number distribution, squeezing
and other phenomena. We show in all cases that the system is very sensitive to any
variation in the mean photon numbers.

KEY WORDS: parametric frequency converter; Jaynes–Cummings model; squeezing;
Q-function.

1. INTRODUCTION

It is well known that the interaction of a single two-level atom with the
quantized electromagnetic field of a lossless high-Q cavity is a central problem
in cavity quantum electrodynamics (Filipowiczet al., 1985, 1986; Guzmanet al.,
1989, Meschedeet al., 1985; Rempeet al., 1987). The simplest physical situation
may be described by the well known and today fundamental Jaynes–Cummings
model (JCM) (Jaynes and Cummings, 1963). Despite being simple enough to
be analytically soluble in the rotating wave approximation (RWA), this model
has been a source of insight into the nuances of the interaction between light
and matter. It has allowed a deeper understanding of the dynamical entangling
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and disentangling of the atom-field system over the course of time. It has also
led to nontrivial predictions, such as the collapse–revival phenomenon (Eberly
et al., 1980; Narozhnyet al., 1981), vacuum-field Rabi splitting, sub-Poissonian
statistics, antibunching (Diedrich and Walther, 1987; Short and Mandel, 1983),
squeezing (Kuklinski and Madajczyk, 1988; Short and Mandel, 1983), chaos, and
trapping states (Gea-Bancloche, 1990, 1991; Milonniet al., 1983a,b; Phoenix
and Knight, 1988, 1991a,b; Slosseret al., 1989; Slosser and Meystre, 1990). In
fact the complex dynamical evolution and the fully quantum nature of the model
have turned it into a laboratory for theorists and the basis of many more elaborate
models.

The Hamiltonian model describing such a system is given by

Ĥ

h
= ωâ†â+ ω0

2
σ̂ + λ(â†σ̂− + âσ̂+), (1)

whereω is the field frequency,̂a† and â are the field creation and annihilation
operators satisfying the commutation relation [â, â†] = 1, whileλ is the coupling
constant, andω0 is the natural transition frequency of the atom,σ±, andσz are the
usual 2× 2 Pauli matrices satisfying

[σz, σ±] = ±2σ±, [σ+, σ−] = σz. (2)

There are a huge number of papers considering this model in great detail.
Most of these papers concentrate on the statistical behavior as well as the dynam-
ics of the model; for more details see Shore and Knight (1993) and the references
therein. However, to meet the experimental realization, there are several attempts
to generalize and modify this model into different directions. For instance it has
been generalized and extended to include the effects of cavity mode decay as well
as black-body photons (Knight and Radmore, 1982; Puri and Joshi, 1989). Fur-
thermore we can see the consideration of multimode and multiphoton instead of
single mode and single photon processes (Abdallaet al., 1990, 1991, 2002), addi-
tion of Kerr-like medium (Buzek and Jex, 1990; Joshi and Puri, 1992; Werner and
Risken, 1991a,b), and Stark shift, among other modifications (Abdel-Atyet al.,
2002; Gouet al., 1997; Moyaet al., 1991). We may also refer to Tavis–Cummings
model (TCM) as a generalization of JCM (Deng, 19983; Joshi and Lawande, 1991;
Taviset al., 1966) where the angular momentum operators replace the Pauli ma-
trices to study multilevel atom instead of two-level atom (Bogolubovet al., 1984;
Makhviladze and Shelepin, 1974). In the meantime it has been observed that if the
interaction occurs between more than one field, mode none of the above workers
considered modifications to include the interaction between the field modes them-
selves. In the present communication, we shall fill this gap and introduce a new
Hamiltonian model taking the interaction between the fields to be of a parametric
frequency type (Glauber, 1963). In fact parametric frequency conversion occurs
in a number of well-known phenomena including the production of anti-Stokes



P1: GXB

International Journal of Theoretical Physics [ijtp] PP1009-ijtp-474210 November 18, 2003 12:22 Style file version May 30th, 2002

Quantum Mechanics of Two-Field Parametric Frequency Converter 2737

radiation in Brillouin and Raman scattering, and the upconversion of light signals
in nonlinear media. Furthermore parametric up conversion is of interest for the
conversion of infrared wavelengths into the visible part of the spectrum where fast
and efficient detection is possible using photomultipliers (Abdallaet al., 2001a,b;
El-Oranyet al., 2001a,b,c).

The model we shall introduce consists of two modes of the cavity field in-
teracting with a single atom within a perfect cavity. The interaction between the
fields will be taken into account where we assume it to be of parametric frequency
converter type. In this case the model we shall consider takes the form

Ĥ

h
=

2∑
i=1

[ωi â
†
i âi + λi (â

†
i σ̂− + âi σ̂+)] + ω0

2
σ̂z+ λ3(â†1â2+ â1â†2), (3)

whereωi , i = 1, 2 are the fields frequencies, andω0 has the same meaning as in
Eq. (1), whileλi , i = 1, 2 are the coupling constants between the modes and the
atom. The last term of the above Hamiltonian represents the interaction between
the modes whereλ3 is the coupling parameter. The operatorsâi and â†j are the
usual Boson operators for the quantized fields mode which obey [âi , âj ] = δi j ,
whereδi j = 1 if i = j , and zero otherwise.

The Hamiltonian (3) can be regarded in one side as a generalization of the
Jaynes–Cummings model and in the other side as a two field parametric frequency
model. This is quite obvious from the comparison between Eqs. (1) and (3) where
the effect of the second mode as well as the interaction between the fields are
apparent from the existence of the coupling parametersλ2 andλ3, respectively.
The main purpose of the present paper is to consider the atomic inversion as well as
to discuss some statistical properties related to the Hamiltonian of Eq. (3). To reach
our goal we have to find the exact time-dependent expressions for the dynamical
operatorŝai andσ ′s. This can be achieved by solving the equations of motion in
the Heisenberg picture.

For this purpose we devote section 2 to giving the exact solution for the
equations of motion. In section 3 we shall consider the probability amplitude as
well the atomic inversion, while in section 4 we discuss the correlation function
followed by a discussion related to the squeezing phenomenon in section 5. We
have also devote section 6 to consider the second-order correlation function for
each mode. While in section 7 we discuss the behavior of the Q-function, followed
by a consideration of the phase distribution and quantum field entropy in 7 and 10,
respectively.

2. DYNAMICAL OPERATORS AND THE WAVEFUNCTION

Our aim in this section is to concentrate on finding the dynamical operators
expression for both atomic and fields for the present system. Also we shall introduce
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the exact formula for the wavefunction in Schr¨odinger represtation. Both of these
expressions will be used later in our discussion for the statistical properties of the
model. For this reason let us first find the solution of the Heisenberg equations of
motion. To do so we introduce the canonical transformation

â1 = b̂1 cosξ + b̂2 sinξ, â2 = b̂2 cosξ − b̂1 sinξ, (4)

whereξ = 1
2 tan−1( 2λ3

ω2−ω1
), and the operatorŝbi and b̂†j satisfy the commutation

relation [̂bi , b̂j ] = δi j = 1 if i = j andzerootherwise. In this case the Hamiltonian
(3) takes the form

Ĥ

h
=

2∑
i=1

Äi b̂
†
i b̂i + ω0

2
σz+ δ1(b̂†1σ− + b̂1σ+)+ δ2(b̂†2σ− + b̂2σ+) (5)

whereδi , i = 1, 2 are the modified coupling parameters given by

δ1 = (λ1 cosξ − λ2 sinξ ), and δ2 = (λ2 cosξ + λ1 sinξ ), (6)

andÄi , i = 1, 2 are the new free frequencies of fields such that

Ä1 = (ω1 cos2 ξ + ω2 sin2 ξ − λ3 sin 2ξ ), and

Ä2 = (ω2 cos2 ξ + ω1 sin2 ξ + λ3 sin 2ξ ). (7)

Before we go further let us assume the states|m1, m2〉a (say) corresponding
to the physical operatorŝai and â†i , i = 1, 2 such that̂a1|m1, m2〉 = √m1|m1−
1, m2〉 and â2|m1, m2〉 = √m2|m1, m2− 1〉 and the states|n1, n2〉b correspond-
ing to the rotated operatorŝbj and b̂†j j = 1, 2 with properties similar to that
of the operatorŝai and â†i . Then the connection between the two states are
given by

|m1, m2〉a =
m1∑
i=0

m2∑
i=0

(−) j

(
m1

i

)(
m2

j

)(
n1!n2!

m1!m2!

) 1
2

× (cosξ )m2− j+i (sinξ )m1−i+ j |n1, n2〉b, (8)

wheren1 = i + j , and n2 = m1+m2− i − j . In this case one can show that
â†i âi |m1, m2〉a = mi |m1, m2〉a, i = 1, 2 and similarly for the other operators
b̂†j b̂
†
j |n1, n2〉b = nj |n1, n2〉b, j = 1, 2. Furthermore if we assume thatαi , i = 1, 2

is the eigenvalues of the oparatorsâi with respect the coherent state|αi 〉 and
β j , j = 1, 2 are the eigenvalues of the oparatorsb̂j with respect to the coherent
states|β j 〉. Then the relation between the two eigenvalues is

α1 = β1 cosξ + β2 sinξ, α2− β2 cosξ − β1 sinξ,
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It is well known that for any operator̂O the Heisenberg equation of motion
is given by

dÔ

dt
= ∂ Ô

∂t
+ 1

i h
[ Ô, Ĥ ], (9)

therefore the equations of the motion for the Hamiltonian (5) are

db̂1

dt
= −iÄ1b̂1− i δ1σ̂−,

db̂2

dt
= −iÄ2b̂2− i δ2σ−,

dσ̂−
dt
= −iω0σ̂− + i (δ1b̂1+ δ2b̂2)σ̂z,

dσ̂z

dt
= 2i δ1(b̂†1σ̂− − b̂1σ̂+)+ 2i δ2(b̂†2σ̂− − b̂2σ̂+). (10)

However because of the difficulty of solving the system of equations resulting
from the Heisenberg equations of motion we shall adjust the coupling parameter
λ3 to take the form

λ3 = λ1λ2

(λ1+ λ2)
ε, where ε = ω2− ω1

λ2− λ1
(11)

In this case the restrictive condition (11) implies that the coupling parameterδ1

tends to zero whileδ2 survives and equals toη =
√
λ2

1+ λ2
2. After straightforward

calculations the general solution of Eqs. (10) are given by

b̂1(t) = b̂1(0) exp(−iÄ1t),

b̂2(t)iωt = ei Ĉt

[[
cos(γ t)− i

Ĉ

γ
sin(γ t)

]
b̂2(0)− i

η

γ
sin(γ t)σ̂−(0)

]
,

σ̂−(t)iωt = ei Ĉt

[[
cos(γ t)+ i

Ĉ

γ
sin(γ t)

]
σ̂−(0)− i

η

γ
sin(γ t)b̂2(0)

]
,

σ̂z(t) =
(

cos(2Ĉt)− i
1

2C
sin(2Ĉt)

)
σ̂z(0)+ sin(2Ĉt)

C
[Ĉ

− 2ηb̂2(0)σ̂+(0)]+ sin2(Ĉt)

C
, (12)

where

Ĉ = 1

2
σ̂z+ η(b̂2σ̂+ + b̂†2σ̂−), (13)

and1 = (ω0−Ä2) represents the detuning parameter. The quantityγ andC in
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Eq. (12) are

γ =
[
12

4
+ η2(b̂†2b̂2σ̂+ + σ̂− + 1)

] 1
2

, andC =
[
12

4
+ η2(b̂†2b̂2+ σ̂+σ̂−)

] 1
2

,

(14)

Having obtained the dynamical operators expressions for the Hamiltonian
model (5), we are therefore in position to discuss the statistical properties of the
present system. However, it will be also convenient to construct the wavefunction
in Schrödinger picture. Thus if we consider that, at timet = 0, the atom is prepared
in its coherent excited state|θ , φ〉 = [cos θ2 |e〉 + sin θ

2e−iφ|g〉], and both fields are
considered to be initially in a coherent states, then the initial wavefunction of the
system can be written as

|ψ(0)〉 =
∞∑

n1,n2=0

[
qn1,n2

[
cos

θ

2
|e〉 + sin

θ

2
e−iφ|g〉

]
⊗ |n1, n2〉b

]
. (15)

After some algebric manipulations the wavefunction att Â 0 will take the
form

|ψ(t)〉 =
∞∑

n1,n2=0

[
cos

θ

2
{F1(n2, t)}qn1,n2

− ie−iφ sin
θ

2
e1(n2, t){ν1(n2)qn1,n2+1}

]
|n1, n2〉b ⊗ |e〉

+
∞∑

n1,n2=0

[
e−iφ sin

θ

2
F̄2(n2, t)qn1,n2

− i cos
θ

2
e2(n2, t)ν2(n2, t)qn1,n2−1

]
|n1, n2〉b ⊗ |g〉.

=
∞∑

n1,n2=0

[ A(n1, n2, t)|n1, n2〉b ⊗ |e〉 + B(n1, n2, t)|n1, n2〉b ⊗ |g〉], (16)

where

Fj (n2, t) =
(

cosµ̂ j (n2)t − i1

2µ j (n2)
sinµ̂ j (n2)t

)
,

ej (n2, t) = sinµ̂ j (n2)t

µ j (n2)t
, µ2

j (n2) =
[
12

4
+ ν j (n2)

]
, j = 1, 2 (17)

with

ν1(n2) = η2(n2+ 1), ν̂2(n2) = η2n2, (18)
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and the functionF̄ i , i = 1, 2 in Eq. (16) is the complex conjugate of the function
Fi .

Now let us introduce a combination between the operatorsb̂1 andb̂2 which
will be more convenient for us to use. This may be written as

H (l , m, r, p, t) = 〈ψ(t)|b̂†l1 b̂m
1 b̂†r2 b̂p

2 |ψ(t)〉

= exp(−|β2|2)βm
1 β
∗l
1 β

p
2 β
∗r
2

∞∑
n2=0

|β2|2n2

n2!

[
F1(n2+ p, t)

× F̄1(n2+ r, t)

+ |β2|−2
√

(n2+ p)(n2+ r )e2(n2+ p, t)× e2(n2+ r, t)√
ν2(n2+ p)ν2(n2+ r )

]
, (19)

The above formula will be usefull for us, and we shall use it later. Further let us
introduce the reduced density operatorρ f (t) as follows

ρ f (t) = |A(t)〉〈A(t)| + |B(t)〉〈B(t)|, (20)

where|A(t)〉 and|B(t)〉 are defined through Eq. (16). In the forthcoming sections
we shall employ the results obtained here to discuss some statistical properties for
the present model.

3. ATOMIC INVERSION

Atomic population inversion can be considered as the simplest important
quantity in the JCM. It is defined as the difference between the probabilities of
finding the atom in the exited state and in the ground state. When the atom is in
the excited state, the atomic inversion is given by

W(t) = 1

2
e−|β2|2

∞∑
n2=0

n̄n2
2

n2!
{|F1(n2, t)|2− [e1(n2, t)ν1(n2)]2}, (21)

whence we find the phenomenon of collapses and revivals similar to that of the
coherent state JCM case. Since the revival times can be estimated (Eberlyet al.,
1980; Gerry and Hach, 1993; Moya-Cessa and Vidiella-Barranco, 1995; Narozhny
et al., 1981; Vidiella-Barrancoet al., 1992), the revival times for a coherent state
can be written astR = 2π

√
n̄2. In our numerical investigations we plot the atomic

inversion against timet taking into consideration the atom initially in the excited
state and the field is prepared for different cases. In all cases we consider here it
should be noted that we assum the parametersθ = φ = 0. In Fig. 1(a) we have
taken the two fields parameterα1 = −α2 = 3, and the coupling parameters ratio
λ1/λ2 = 1.1 which represents very weak field (almost vacuum). In this case we see
in absence of the detuning parameter (resonance case1 = 0) that there are regular
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Fig. 1. The evolution of the atomic inversion against timet the atom initially in excited state (θ = 0 and
φ = 0) and the field is prepared in some different cases. (a)α1 = −α2 = 3, λ1/λ2 = 1.1 and1 = 0;
(b)1 = 4 and other parameters same as (a); (c)α1 = α2 = 3,λ1/λ2 = 0.1; and1 = 0; (d)1 = 4 and
other parameters same as (c); (e)α1 = α2 = 3,λ1/λ2 = 1.1 and1 = 0, (f)1 = 4 and other parameters
same as (e).
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Fig. 1. (Continued.)

oscillations aroundW(t) = 0 where no collapses and revivals can be observed.
Similar observation can be seen for the off-resonance case when1 = 4, where we
can see regular oscillations aroundW(t) = 0.4 but without any observation of the
collapses and revivals phenomenon, however there is a rapid fluctuations occurred
in the function, see Fig. 1(b). On contrary when the two fields parameter take the
valuesα1 = α2 = 3, and the coupling parameters ratioλ1/λ2 = 0.1, corresponding
to slightly weak field (̄n2 ∼ 9), the situation is drastically changed. In this case
and in absence of the detuning parameter (exact resonance case), we can realize
for tR = 2π

√
n̄b that after short period of collapse the function shows long revival

period followed by another collapses period, however as the time goes on we can see
very weak revivals appeared at different period of the time during the course of the
interaction, see Figs. 1(c). When the detuning parameter takes place1 = 4 we can
see an increase in the revivals period and both collapses and revivals are apparent,
however the function value is shifted upwards, see Fig. 1(d). Same conclusion may
be given for the case in which the coupling parameters ratioλ1/λ2 = 1.1(n̄2 ∼ 18)
with the same value of the field parametersα1 = −α2 = 3. In this case the exact
resonance shows fluctuations around zero, while for the nonresonance case the
mean value of the atomic inversion is shifted upwards which means that the energy
is inherent in the atomic system, see Fig. 1(e) and (f).
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4. PHOTON NUMBER DISTRIBUTION

In this section we shall discuss the behavior of the photon numbers related to
the present system. When the atom starts from its excited state we can write the
mean number of photons for each mode which is related to the physical modes
according to the following formulae

〈n̄1(t)〉 = H (1, 1, 0, 0) cos2 ξ + Re(H (1, 0, 0, 1)) sin 2ξ + H (0, 0, 1, 1) sin2 ξ,

(22)

and

〈n̄2(t)〉 = H (1, 1, 0, 0) sin2 ξ − Re(H (1, 0, 0, 1)) sin 2ξ + H (0, 0, 1, 1) cos2 ξ.

(23)

In the present case the Rabi frequency is proportional to
√

(n2+ 1), which is
similarly to that of the single mode JCM case. This is in fact due to the canonical
transformation and the restricted condition which have been used to transform the
present system to a single mode case. We have plotted in Fig. 2 the expectation value
of the photon numbers〈n̄1(t)〉 and〈n̄2(t)〉 against the timet for different values of
the parametersα1, α2, λ1, λ2, and the detuning parameter1. For example when
we take the parametersα1 = −α2 = 3, and the ratio of the coupling parameters
λ1/λ2 = 1.1 with fixed value of the parametersθ = 0, andφ = 0, we can observe in
the resonance case1 = 0 that, there are slow and irregular oscillations with slight
intersection between the two functions. This is quite obvious from an oscillating
envelope appearing in Fig. 2(a). However when the detuning parameter is taken
into consideration1 = 4 (off-resonance case), we find there are rapid oscillations,
however with small amplitude imposed on slowly oscillating envelope as shown in
Fig. 2(b). In addition we can also see in this case more regularity in the functions
behavior which is on the contrary to the exact resonance case. For the case in
which the parametersα1 = α2 = 3, we have plotted Figs. 2(c)–(f) for the same
values of the other parameters. We have observed that in both cases resonance
and off-resonance there are rapid oscillations with small amplitude imposed on an
oscillating envolope. Also we can mention that there no intersection occurs between
the two function during the whole period of the time considered. This difference
is due to the appearance of the middle terms in both Eqs. (22) and (23) which is
the source of the oscillating envelope as can be seen clearly from the figures. This
means that the first mode gains energy at the expense of the second mode.

5. SQUEEZING PHENOMENON

Investigation of the squeezing properties of the radiation field is a central topic
in quantum optics. For this reason we devote this section to discuss the squeezing
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Fig. 2. The evolution of the photon number operator against timet the atom initially in excited state
(θ = 0 andφ = 0) and the field is prepared in some different cases. (a)α1 = −α2 = 3, λ1/λ2 = 1.1
and1 = 0; (b)1 = 4 and other parameters same as (a); (c)α1 = α2 = 3, λ1/λ2 = 0.1 and1 = 0,
(d)1 = 4 and other parameters same as (c); (e)α1 = α2 = 3,λ1/λ2 = 1.1 and1 = 0; (f) 1 = 4 and
other parameters same as (e).
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Fig. 2. (Continued.)
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phenomenon related to the present system. In fact, squeezed light is a radiation
field without a classical analogue, one of whose quadratures of the electric field
has less fluctuations than those for a coherent state at the expense of increased
fluctuations in the other quadrature, such that the Heisenberg uncertainty relation
is fulfilled. The usefulness of such light relates to several applications in optical
communication networks (Shapiroet al., 1979; Yuen and Shapiro, 1978, 1980), to
interferometric techniques (Caves and Schumaker, 1985; Schumaker and Caves,
1985), and to optical waveguide tap (Shapiro, 1980). Generation of squeezed light
has been observed in many optical processes (Loundon and Knight, 1987; Meystre
and Walls, 1991). We shall here concentrate on discussing the two mode normal
squeezing, and therefore to reach our goal we must calculate the variances of the
two slowly varying quadratures of

x̂ = 1

2
√

2
(â†1 + â1+ â†2 + â2) and ŷ = i

2
√

2
(â†1 − â1+ â†2 − â2) (24)

These operators satisfy the commutation relation [x̂, ŷ] = i
2 and the uncertainty

relation

(1x̂)2(1ŷ)2 ≥ 1

16
. (25)

The state of the field is said to be squeezed whenever one of the two quadra-
turesx̂ and ŷ satisfies the relation

〈(1x̂)2〉 or 〈(1ŷ)2〉 ≺ 1

4
. (26)

The variance〈(1x̂)2〉 = 〈x̂2〉 − 〈x̂2〉 is given in terms of annihilation and creation
operators expectation values by

〈(1x̂)2〉 = 1

4
+ 1

4

{〈(
b̂†21 + b̂2

1 + b̂†21 b̂1
)〉

sin2
(π

4
− ξ

)
+ 〈(b̂†22 + b̂2

2 + b̂†22 b̂2
2

)〉
cos2

(π
4
− ξ

)
+〈(b̂1b̂2+ b̂1b̂†2 + b̂2b̂†1 + b̂†1b̂†2)〉 cos 2ξ

−
[
〈(b̂1+ b̂†1)〉 sin

(π
4
− ξ

)
+ 〈(b̂2+ b̂†2)〉 cos

(π
4
− ξ

)]2
}
. (27)

In our numerical computation for discussing the temporal behavior of〈(1x̂)2〉,
we have considered two different cases provided thatθ = 0, andφ = 0. One when
we take the valueα1 = −α2 = 3 and plotted Fig. 3(a) and (b), and the second when
we takeα1 = α2 = 3, and plotted Fig. 3(c)–(f). For the first case we have taken the
coupling parameters ratioλ1/λ2 = 1.1, and the system at exact resonance1 = 0.
In this case we can see a small amount of squeezing, however when the detuning
parameter takes place1 = 4 (off-resonance case) we observe an increase in the
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Fig. 3. Time evolution of the quantum fluctuations (1x)2 against timet the atom initially
in excited state (θ = 0 andφ = 0) and the field is prepared in some different cases. (a)
α1 = −α2 = 3, λ1/λ2 = 1.1 and1 = 0; (b)1 = 4 and other parameters same as (a); (c)
α1 = α2 = 3, λ1/λ2 = 0.1 and1 = 0; (d) 1 = 4 and other parameters same as (c); (e)
α1 = α2 = 3, λ1/λ2 = 1.1 and1 = 0; (f) 1 = 4 and other parameters same as (e).
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Fig. 3. (Continued.)

number of the fluctuations with an decrease in its maximum value. The squeezing
amount in this case is too small and occurred for a short period of the time, see
Fig. 3(a) and (b). For the other case where the field parametersα1 = α2 = 3 and
the ratio of the coupling parametersλ1/λ2 = 0.1, we can observe the squeezing
occurred just twice for both resonance1 = 0, and off-resonance1 = 4, cases
within short period of the time, however the amount of the squeezing in the off-
resonance case is much larger then the exact resonance case, see Fig. 3(c) and
(d). This phenomenon gets more pronounced in the strong field case, for example
when we increase the ratio of the coupling parametersλ1/λ2 = 1.1, where we can
see the maximum value of the squeezing is also increased, see Fig. 3(e) and (f).

6. SECOND-ORDER CORRELATION FUNCTION

As another example of nonclassical of light we introduce in this context is the
sub-Poissonian light which can be measured by photodetectors. A state (of a single
mode for convenience) which displays sub-Poisson statistics is characterized by
the fact that the variance of the photon number〈(1n̂i (t))2〉 is less then the average
photon number〈â†i (t)âi (t)〉 = 〈n̂i (t)〉. This can be expressed by means of the
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normalized normal second-order correlation function as (Loundon, 1983).

g(2)
i (t) =

〈
â†2i (t)â2

i (t)
〉〈

â†i (t)â2
i (t)

〉2 = 1+ 〈(1n̂i (t))2〉 − 〈â†i (t)âi (t)〉
〈â†i (t)âi (t)〉2

, (28)

where the subscripti relates to thei th mode. Then it holds thatg(2)
i (t) ≺ 1 for sub-

Poissonian distribution,g(2)
i (t) Â 1 for super-Poissonian distribution and when

g(2)
i (t) = 1 Poisson distribution of photons occurs. To discuss the behavior of the

correlation function related to the present system we have to calculate the quantities
〈â†2i â2

i 〉, i = 1, 2 by means of the rotating transformation (4). In the first mode case
we have the expression

〈â†21 â2
1〉 =

〈
b̂†21 b̂2

1

〉
cos4 ξ + 〈b̂†22 b̂2

2

〉
cos4 ξ

+ 1

2
Re
〈(

b̂†21 b̂2
2

)〉
sin2 2ξ + Re

〈(
b̂†21 b̂1b̂2

)〉
cos2 ξ sin2 2ξ

− 2Re
(〈

b̂1b̂†22 b̂2
〉)

cos2 ξ sin 2ξ + 〈b̂†1b̂1b̂†2b̂2〉 sin2 2ξ (29)

and

〈n̂1(t)〉 = 〈â†1(t)â1(t)〉
= H (1, 1, 0, 0) cos2 ξ + Re(H (1, 0, 0, 1)) sin 2ξ

+H (0, 0, 1, 1) sin2 ξ (30)

Similarly for the second mode we have the following:〈
â†22 â2

2

〉 = 〈b̂†21 b̂2
1

〉
sin4 ξ + 〈b̂†22 b̂2

2

〉
cos4 ξ

+ 1

2
Re
(〈

b̂†21 b̂2
2

〉)
sin2 2ξ − Re

(〈
b̂†21 b̂1b̂2

〉)
sin2 ξ sin2 2ξ

− 2Re
(〈

b̂1b̂†22 b̂2
〉)

cos2 ξ sin 2ξ + 〈b̂†1b̂1b̂†2b̂2〉 sin2 2ξ (31)

and

〈n̂2(t)〉 = 〈â†2(t)â2(t)〉
= H (1, 1, 0, 0) cos2 ξ − Re(H (1, 0, 0, 1)) sin 2ξ

+ H (0, 0, 1, 1) sin2 ξ. (32)

Now let us discuss the numerical results for the functiong(2)
1 (t) when the

field state initially in coherent state and the atom in the excited state. As before we
shall consider the case in which field parametersα1 = −α2 = 3, and the coupling
parameters ratioλ1/λ2 = 1.1. In absence of the detuning parameter1 = 0, (exact
resonance case) we can see regular fluctuations behavior and the function is almost
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super-Poissonian (thermal distribution), where the field shows Poisson distribution
at some interval. When the detuning parameter takes place1 = 4, (off-resanonce
case) we can see more fluctuations in the function behavior with observation of
super and sub-Poissonian distribution. However the value of the themal distribution
is much greater than the sub-Poissonian distribution, see Fig. 4(a) and (b). As
soon as we takeα1 = α2 = 3, while the value of the coupling parameters ratio
λ1/λ2 = 0.1, a drastically changing occur in the function behavior. In this case
when1 = 0 the function shows oscillation between super-Poissonian and sub-
Poissonian distribution. The minimum value of the function occurs at the half
time of the interaction period, showing sub-Poissonian behavior. This behavior is
not quite in presence of the detuning parameter1 = 4, where we observe more
decreasing in the minimum value followed by more increasing in the maximum
value. However, this behavior takes time longer than that the exact resonance case,
see Fig. 4(c) and (d). More increase in the coupling parameters ratioλ1/λ2 = 1.1,
leads to more decrease in the sub-Poissonian interval, see Fig. 4(e) and (f). Finally
we may point out that as a result of the similarity between Eqs. (28) and (31) then
the behavior of the functiong(2)

2 (t) will be similar to that ofg(2)
1 (t).

7. Q-FUNCTION

In the following we shall concentrate on one of the most important quasi-
probability distribution functions, thaat is theQ-function (Mollow and Glauber,
1967a,b). TheQ-function is not only a convenient tool to calculate expectation
values of antinormally ordered products of opeators, but also it gives us a new
insight into the mechanism of the interaction for the model under consideration.
It is well known that theQ-function can be defined in terms of diagonal elements
of the density operator in the coherent state. Therefore we shall use the reduced
density operator of the fieldρ f (t) given by Eq. (20) to study the evolution of the
quasi-probability distributionQ-function defined by

Q(0, t) = 1

π
〈0|ρ f (t)|0〉 1

π

∞∑
l ,m=0

ρ
f

l ,m(t)
(0∗)l (0)m

√
l !m!

, (33)

where|0〉 is a coherent state. Provided we define0 = x + iy, then in Fig. (5) we
have sketched theQ-function for the field initially in a coherent state and the atom
in its excited state. As usual we fixedθ = 0, andφ = 0, where we considered
the case in which the field parametersα1 = −α2 = 3, and the coupling parameters
ratioλ1/λ2 = 1.1. i.e., the field is almost vacuum. Initially at timet = 0 we observe
the function has only one peak centered at the origin (0,0), see Fig. 5(a), and as time
develops it does not change its position. However, for the other cases of moderate
or strong fields as the time develops the function splits into two peaks moving into
opposite directions until they meet again at the revival time, see Fig. 5(f). That is,
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Fig. 4. Time evolution of the Correlation functiong(2)
1 (t) against timet the atom initially in excited state

(θ = 0 andφ = 0) and the field is prepared in some different cases. (a)α1 = −α2 = 3, λ1/λ2 = 1.1
and1 = 0; (b)1 = 4 and other parameters same as (a); (c)α1 = α2 = 3, λ1/λ2 = 0.1 and1 = 0;
(d)1 = 4 and other parameters same as (c); (e)α1 = α2 = 3,λ1/λ2 = 1.1 and1 = 0; (f)1 = 4 and
other parameters same as (e).
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Fig. 4. (Continued.)

as time develops the two-peak move in the opposite directions around a circular
path whose radius equals the square root of the initial mean photon numbern̄2,
and the peaks meet at the opposite side of the circle from the start at the revival
time. The two peaks are symmertic at exact resonance, this is observed at half
the revival time when we take1 = 0, andα1 = α2 = 3, while λ1/λ2 = 1.1 or
0.1, see Fig. 5(b) and (d). In the other case when we take the detuning parameter
into account the function shows asymmetric stretching between the two peaks.
Asymmetry behavior is observed for this case of detuning in Figs. 5(c) and (e).
It is to be observed that increasing the mean photon number in the field results
in spreading theQ-function in the phase space and hence an increase in the peak
contour resultant of increasing the coupling parameter ratio.

8. PHASE DISTRIBUTION

Barnett and Pegg defined a Hermitian phase operator in a finite dimensional
state space (Barnett and Pegg, 1989; Obadaet al., 1998, 1999; Pegg and Barnett,
1988, 1989, 1997). They used the fact that, in this state space one can define phase
states rigorously. Thus the phase operator is defined as the projection operator
on the particular phase state multiplied by the corresponding value of the phase.
In fact the phase operator can be employed to investigate the phase properties of
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Fig. 5. The evolution of theQ-function against (x, y) the atom initially in excited state (θ = 0 and
φ = 0) wheret = 1

2 tr and the field is prepared in some different cases. (a)α1 = −α2 = 3,λ1/λ2 = 1.1
and1 = 0; (b)1 = 4 and other parameters same as (a); (c)α1 = α2 = 3, λ1/λ2 = 0.1 and1 = 0;
(d)1 = 4 and other parameters same as (c); (e)α1 = α2 = 3,λ1/λ2 = 1.1 and1 = 0; (f)1 = 4 and
other parameters same as (e).
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quantum state for a single mode of the electromagnetic field. Furthermore, it can
be easily extended to include the two-mode field which is also of interest in the
field of quantum optics. In the following we shall study the phase properties of the
present system in a light of the Pegg–Barnett phase formalism. If we consider the
field initially prepared in a coherent state then the Pegg–Barnett phase distribution
P(ζ, t) can be written as an infinite sum, thus

P(ζ, t) = 1

2π

∞∑
l ,m=0

ρ
f

l ,m(t) exp[i (l −m)(ζ − ζ0)], (34)

whereζ0 is the phase reference angle andρ f
l ,m(t) is the density matrix operator.

Alternatively we may takeζ0 to be zero and rewrite the phase distribution in the
form

P(ζ, t) = 1

2π

{
1+ 2Re

∞∑
l , j=0; j≥l

ρ
f

l , j (t) exp[i ( j − l )ζ ]

}
, (35)

We have computed the phase probability distribution function, related to
a more generalized system of a two-level atom in interaction with a two-mode
but after some specific transformation converted to one-mode as shown above.
In our computations, the field is initially in coherent states and the atom in
excited state. In Fig. 6 the phase distributionP(ζ, t) is plotted againstζ and
time t .

For the case of the almost vacuum (see the parameters taken above in the
previous sections) we see that the distribution is almost flat with a hump around
ζ = 0 and this figure changes slightly as time develops see Fig. 6(a). The case
changes slightly as the case of off-resonance is taken into consideration as can be
seen from Fig. 6(b). This can be related to the phase space plot of the Q-function
shown in Fig. 5(a) where it is centered unmoved at the origin. While for the case
of moderate and strong fields and att = 0 only one peak in the middle appears
at ζ = 0, the peak is symmetric aboutζ = 0. As timet increases the peak in the
middle splits into two peaks diverging away from the middle towards the wings
ζ = ±π where they meet them att = tR but as the time increses the two wings
converge towards the middleζ = 0 att = 2tR. In the case of resonance the figure
is symmetric aroundζ = 0 as can be seen from Figs. 5(c) and (e) where the two-
peak figure shows this symmetry. On the other hand this symmetry is broken in the
case of off-resonance where one of the peaks is subdued while the second peak is
raised. The reason is due to the amplitudes of the two rotating peaks where one of
them has higher value than the other as depicted in the figures for theQ-function
(Obadaet al. 1998 and 1999).
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Fig. 6. The evolution of the phase distribution against (η, t) the atom initially in excited state (θ = 0 and
φ = 0) and the field is prepared in some different cases. (a)α1 = −α2 = 3, λ1/λ2 = 1.1 and1 = 0;
(b)1 = 4 and other parameters same as (a); (c)α1 = α2 = 3,λ1/λ2 = 0.1 and1 = 0; (d)1 = 4 and
other parameters same as (c); (e)α1 = α2 = 3,λ1/λ2 = 1.1 and1 = 0; (f)1 = 4 and other parameters
same as (e).
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Fig. 6. (Continued.)

9. QUANTUM FIELD ENTROPY

Since the field entropy can be used as a measurement of the degradation of
entanglement between the field and the atom, we devote the present section to
discuss the degree of entanglement for the present system. The quantum dynamics
described by the Hamiltonian (3) leads to an entanglement between the field and
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the atom, which will be quantified by the field entropy. From quantum mechanics
point of view the von Neumann entropy of the state p (the density operator for a
given quantum system) is defined as

S= Tr{ρ ln ρ}, (36)

where we have set Boltzmann’s constantκ = 1. If ρ describes a pure state, the
S= 0, and ifρ describes a mixed state, thenS 6= 0. Araki and Lieb showed that
these entropies satisfy the triangle inequalities|Sa − Sf | ≤ S≤ Sa + Sf . Quan-
tum entropies are generally difficult to compute because they involve the diagonal-
ization of large (and, in many cases, infinite dimensional) density matrices. Thus
explicit illustrations of the inequalities|Sa − Sf | ≤ S≤ Sa + Sf are difficult. The
authors of references (Phoenix and Knight, 1988, 1991a,b) succeeded to evaluate
the field entropy in a closed form and showed that it did indeed equal the atomic
entropy at all times in the context of the Jaynes–Cummings model. They consid-
ered a two-level atom interacting with an undamped cavity initially in a coherent
state. In this case the composite entropy is initially zero and remains zero at all
times since the atom-field system is isolated from its environment. If the system
is closed, then we haveSf = Sa, for the entropy of a general two-component sys-
tem. One immediate consequence of this inequality is that if the total system is
prepared in a pure state then the component systems have equal entropies. Since
our Hamiltonian model can be regarded as a generalization of JCM, we shall fol-
low the method adopted earlier to calculate the atomic entropy. The entropies of
the atom and the field, when treated as a separate system, are defined through the
corresponding reduced density operators by

Sa( f ) = Tra( f )
{
ρa( f ) ln ρa( f )

}
(37)

provided we treat both separately. Since the trace is invariant under a similarity
transformation, then we can go to a basis in which the density matrix of the field is
diagonal and then express the field entropySf (t) in terms of the eigenvalueλ±f (t),
for the reduced field density operator. To calculate the various field eigenstates in
a simple way, a general method has been developed by Phoenix and Knight (1988,
1991a,b). By applying this method, we can obtain the eigenvalues for the reduced
density operator thus,

λ±f (t) = 〈A(t)|A(t)〉 ± exp[∓ς ]|〈A(t)|B(t)〉|
= 〈B(t)|B(t)〉 ± exp[∓ς ]|〈B(t)|A(t)〉|, (38)

where

ς = sin h−1

( 〈A(t)|A(t)〉 − 〈B(t)|B(t)〉
2|〈A(t)|B(t)〉|

)
. (39)
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Thus the field entropySf (t) may be expressed in terms of the eigenvalues
λ±f (t) for the reduced field density operator as,

Sf (t) = −[λ+f (t) ln λ+f (t)+ λ−f (t) ln λ−f (t)]. (40)

In the following we shall use Eq. (40) to discuss the degree of entangle-
ment for the present model. For this reason we have considered in our numerical
computations the parametersθ andφ are zero. Thus for different values of both
the mean photon numbersαi , i = 1, 2 and the coupling parameters ratioλ1/λ2,
we plotted Fig. (7). For example when we setα1 = −α2 = 3, andλ1/λ2 = 1.1
and in absence of the detuning parameter (resonances case), we observe a rapid
fluctuations during the course of interaction. This can be seen in Fig. 7(a) where
the entropy function varies between its maximum and its minimum value. This
means that there is a fast collapses and revivals during the interaction period which
leads to a strong and weak entanglement between the atom and the field. Moreover
we can also see disentanglement at certain period of the time. On the other hand
when the detuning parameter takes place1 = 4, (off-resonances case) we observe
some changes occur in the function behavior. For example, we realize the entropy
function reduced its maximum value. In the meantime the numbers of disentangle-
ment period are also decreased. This decrement in the entropy function is nearly
equivalent to half of the exact resonance case, see Fig. 7(b). Now let us turn our
attention to consider the case in which the field parametersα1 = α2 = 3, and the
ratio between the coupling parametersλ1/λ2 = 0.1. In this case the behavior of
the entropy function is drastically changed. For instance, there is no disentangle-
ment can be observe at any period of the time during the course of interaction.
Further the greatest decrement in the field entropy occurs after a short period of
time, followed by an increase in the value of the entropy. As the time developes
we realize there is an increase in the entropy value in addition to irregular fluctu-
ations behavior; see Fig. 7(c). Weak entanglement can be observed in presence of
the detuning parameter where the maximum value of the entropy in this case is
decreased, in the meantime the function shows an increase in it minimum value,
see Fig. 7(d). Comparing with the previous case, any change in the value of the
coupling parameters ratioλ1/λ2 = 1.1 leads to increase in the entropy maximum
value after onset of the interaction provided1 = 0. However we can also see a
decrease in the minimum value just for short period of the time. This is followed by
irregular fluctuations with more increasing in function value, see Fig. 7(e). When
we take1 = 4 similarly behavior to that of the previous cases can be seen but with
more revival in the function, provided the coupling parameters ratio unchanged,
see Fig. 7(f). Finally, we may conclude that in absence of the detuning parameter
(exact resonance case) the entropy function reaches both absolute maximum and
absolute minimum of its value. However, existence of the detuning parameter (off-
resonance case) decreases the maximum value and increases the minimum value
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Fig. 7. (a) The evolution of the field entropy againstt the atom initially in excited state (θ = 0 and
φ = 0) and the field is prepared in some different cases. (a)α1 = −α2 = 3, λ1/λ2 = 1.1 and1 = 0;
(b) 1 = 4 and other parameters same as (a); (c)α1 = α2 = 3, λ1/λ2 = 0.1 and1 = 0; (d)1 = 4
and other parameters same as (c); (e)α1 = α2 = 3, λ1/λ2 = 1.1 and1 = 0; (f) 1 = 4 and other
parameters same as (e).
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Fig. 7. (Continued.)
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of the field entropy, and consequently we can obtain a variation in the degree of
the entanglement. This phenomenon is in fact dominant in all the cases we have
considered.

10. CONCLUSION

In the previous sections of the present paper we have considered the sta-
tistical properties of a new Hamiltonian model. This Hamiltonian represents the
interaction between a single two-level atom and two fields injected simultane-
ously within a perfect cavity. The model can be regarded as a generalization of the
Jaynes–Cummings model, or it can be regarded as a generalization of the para-
metric frequency converter model. Under a certain integrability condition we have
obtained both the dynamical operators in the Heisenberg picture and the wave-
function in the Schr¨odinger picture, see Eq. (16). In obtaining the wavefunction
representation we have taken the system to be initially in a correlated coherent
state. This in fact gave us an advantage to see the interference between the two
fields. Several statistical properties of the system have been discussed, for exam-
ple atomic inversion, photon number distribution, and the squeezing phenomenon.
Most of our discussion concentrated on the effect of the variation of the coupling
parameters ratio, and the detuning parameter as well as the fields mean photon
numbers. We have shown that in all cases the system is sensitive to any variation in
these parameters. For example the degree of the entanglement is affected strongly
when the fields mean photon numbers are changed.
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